

Comparison of a cryopneumatic compression device and ice packs for cryotherapy following ACL reconstruction

Department of Orthopaedic Surgery College of Medicine, Hanyang University

Jae-Hyuk Yang, Kyu-Tae Hwang, Myoung Keun Lee, Eunil Cho, Jin Kyu Lee*

Introduction

+ Cryotherapy

- Decrease edema, pain and inflammation
- Mechanism of action
 - ✓ Vasoconstriction and reduction in secondary hypoxic injury by lowering metabolic demand
 - ✓ Decrease nerve conduction velocity (tissue temperature <15 ℃)

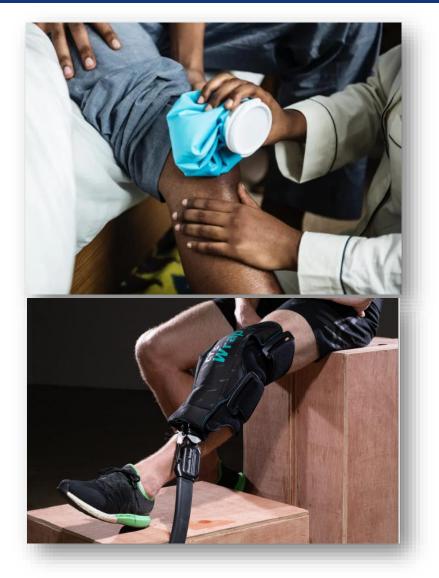
Gatewood, CT. Knee Surg Sports Traumatol Arthrosc 2017;25:501-516. Taber C. Phys Ther 1992;72:294-299. Martimbianco ALC. Phys Ther Sport 2014;15:261-268. Algafly AA. Br J Sports Med 2007;41(6):365-369.

- + Early rehabilitation following ACL reconstruction
 - Pain and knee effusion must be controlled to avoid delay in functional recovery & the quadriceps inhibition phenomenon

Sonnery-Cottet B. Br J Sports Med 2019;53(5):289-298.

Palmieri-Smith RM. Am J Sports Med 2007;35(8):1269-1275.

- + Cryotherapy types
 - Standard ice packs, crushed-ice bags, and Cold compression devices


Jawad M. Surg Technol Int 2017;30:415-424.

Martimbianco ALC. Phys Ther Sport 2014;15:261-268.

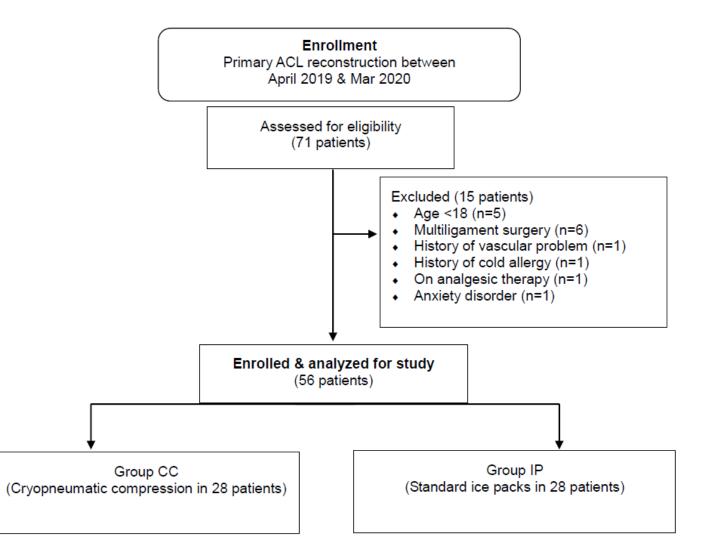
Introduction

- + Cryotherapy types
 - Standard ice packs, crushed-ice bags, and Cold compression devices
- + Cold compression device
 - Constant temperature + Compression

Introduction

- *+ Purpose of the study*
 - To evaluate and compare the effectiveness of cryopneumatic compression device with that of standard ice packs

<u>Hypothesis</u> : cryopneumatic compression device would produce **decreased postoperative pain**, **less opioid consumption** and decreased **effusion**


+ Inclusion criteria

- Between April 2019 ~ March 2020
- Primary ACL reconstruction
- + Exclusion criteria
 - *Age* < 18 years
 - Multi-ligamentous knee injury
 - Contra-indications to compressive or cold therapy
 - History of long-term analgesic therapy
 - Psychologic problem

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow chart.

- + Randomization
 - Group CC : (28 knees) received cryopneumatic compression(CC) device
 - Group IP : (28 knees) received standard ice pack(IP) cryotherapy
- + Cryotherapy protocol
 - 3 times per day
 - *Group CC* : 20 minutes per 1 cycle, 10 °C, compression pressure set at 30mmHg
 - Group IP : maximum coverage on each knees

C.T.C.-7 (DAESUNG MAREF CO., LTD.)

Conventional ice packs

Outcome measures

HILDICAL CENTER

+ Pain evaluation

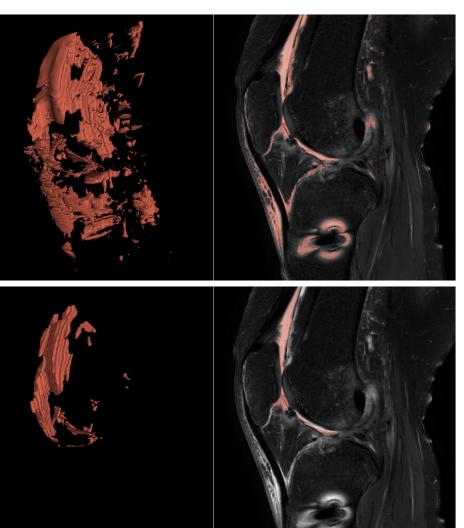
- *Postoperative Opioid consumption : PCA + rescue medicine*
- Patients reported VAS pain score

+ Edema evaluation

 Circumferential measurements performed at thigh(10cm proximal to patella sup. pole), and knee(mid-patella)

Outcome measures

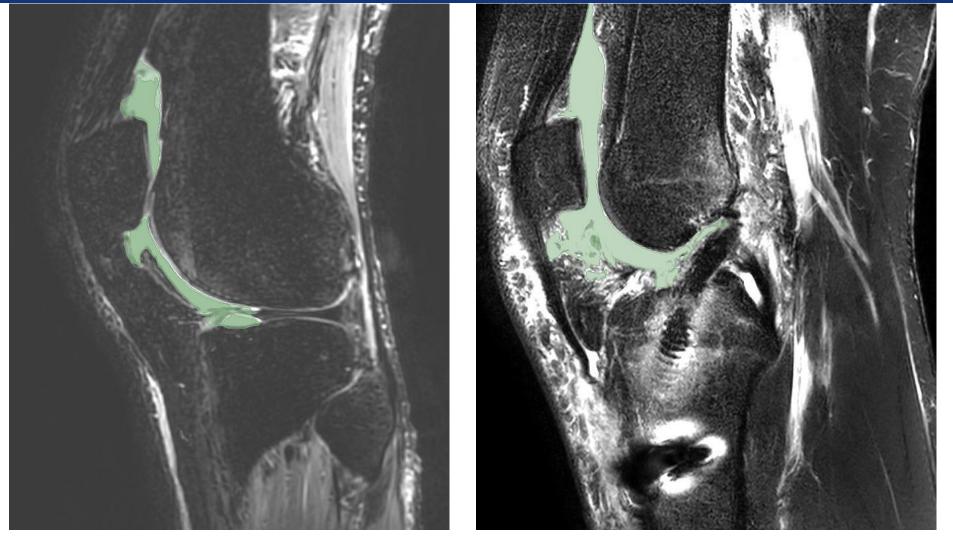
+ Joint effusion


- Intra-articular bleeding : closed suction drainage (during first 2 days)
- 3D MRI reconstruction model (MRI obtained at POD 6)

Outcome measures

+ MRI 3D reconstruction model

- AI based algorithm
- Threshold based identification of fluid signal on T2-weighted MRI sagittal images
- Location of ROI (exclusion of bone and other signals)
- 3D reconstruct for effusion measurement



Effusion segmentation by AI

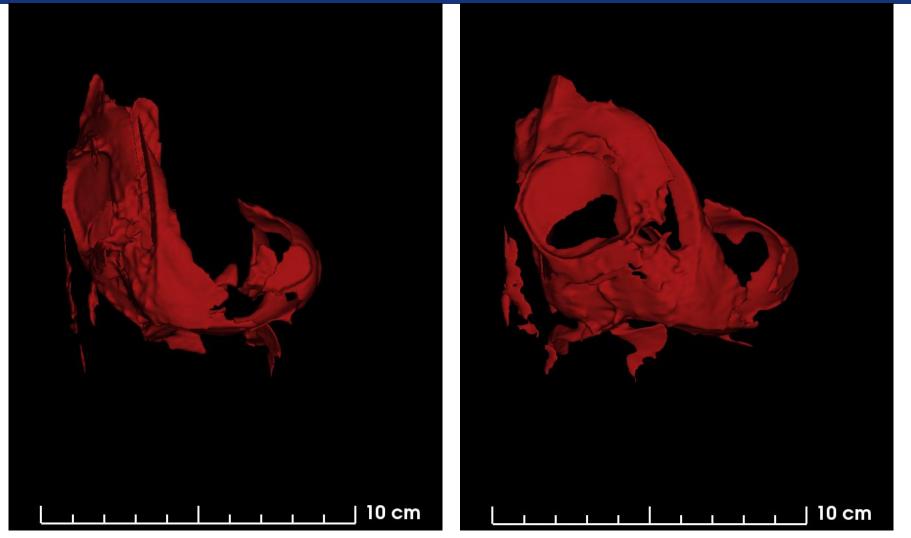


Fig 2. Joint effusion segmentation. Joint effusion segmentation process of sagittal T2-weighted MRI slices obtained from cadaveric (A) and ACL reconstructed (B) knees.

3D reconstructed model by AI

Fig 3. Final three-dimensional MRI reconstructed effusion model. Views from (A) antero-lateral and (B) anterior aspects of the knee

Results Base characteristics

Variables	CC group (N = 28)	IP group (N = 28)	P-value
Age, years	26 (19-34)	24.5 (21.5–30.5)	0.724
Sex (male)	23 (82.1)	23 (82.1)	1.000
Body mass index	25.5 ± 2.9	26.28 ± 4.3	0.433
Affected side (right)	16 (57.1)	13 (46.4)	0.422
Graft type			
Allograft	1 (3.6)	3 (10.7)	0.611
Hamstring autograft	27 (96.4)	25 (89.3)	
Combined meniscus injury	15 (53.6)	18 (64.3)	0.415

Table 1. Patient characteristics and clinical data.

Note. Non-normally distributed numerical variables are presented as median (Q1-Q3) and were tested by a Wilcoxon rank-sum test. Categorical variables are presented as n (%) and were tested by a Chi-square test or Fisher's exact test.

Results Pain evaluation - VAS

Variables	CC group (N = 28)	IP group (N = 28)	P-value
VAS preop.	2.0 ± 1.5	2.1 ± 0.9	0.596
VAS (day 4)	2.1 ± 1.4	3.3 ± 1.3	0.001
VAS (day 7)	1.5 ± 1.3	2.0 ± 0.9	0.078
VAS (day 14)	1.3 ± 1.1	1.3 ± 0.8	0.980
ΔVAS (day 4)	0.1 ± 1.4	1.2 ± 1.4	0.007
ⁿ⁾ ΔVAS (day 7)	-0.5 ± 1.7	-0.1 ± 1.2	0.363
ΔVAS (day 14)	-0.6 ± 1.5	-0.8 ± 1.1	0.577

Index : **preop VAS** (mean)

Table 2. Comparison of VAS pain scores between groups.

VAS represents changes in VAS at 4, 7, and 14 days postoperatively relative to <u>preoperative measurements</u>. VAS scores are presented as a least-square mean and were tested by linear mixed model analyses for repeated measures.

Results Soft tissue Edema - Circumference

Variables	CC group (N = 28)	IP group (N = 28)	P-value
Patella (day 7)	1.1 ± 1.6	1.2 ± 1.5	0.899
Patella (day 14)	0.9 ± 1.8	0.6 ± 1.6	0.508
Thigh (day 7)	-0.4 ± 1.8	0.2 ± 1.5	0.134
Thigh (day 14)	-1.0 ± 2.9	0.1 ± 1.4	0.120

Table 3. Comparison of circumferential measurements (cm) at mid-patellar and thigh levels in the two groups.

Values are given as mean ± standard deviation and represent the difference in circumferential measurements (cm) at 7 and 14 days postoperatively relative to index measurements at **day 4**.

Results Pain evaluation - Administered analgesics

Variables	CC group (N = 28)	IP group (N = 28)	P-value
Rescue medication	0.6 ± 1.4	0.5 ± 1.0	0.657
Fentanyl –6h	220.9 ± 106.7	208.2 ± 80.5	0.626
Fentanyl –12h	370.6 ± 156.7	352.7 ± 120.0	0.647
Fentanyl –24h	561.1 ± 223.3	584.4 ± 209.0	0.705
Fentanyl –48h	840.6 ± 297.5	987.4 ± 343.6	0.136

Table 4. Comparison of cumulative fentanyl consumption (cc) and rescue medication (ampules) in the groups. NOTE. Values are given as mean ± standard deviation.

Results Joint effusion

Variables	CC group	IP group	P-value
Drainage volume	148.2 ± 102.8 (28)	171.3 ± 64.8 (28)	0.324
MRI Effusion (calculated)	47.1 ± 11.9 (21*) *7 Pt. refused Day 6 MRI	51.8 ± 16.0 (22**) **6 Pt. refused Day 6 MRI	0.280
Total Effusion volume	175.2 ± 83.4 (21)	239.7 ± 78.8 (22)	0.015

Table 5. Comparison of effusion (cc) measured by drainage and 3D MRI reconstruction in the two groups. NOTE. Values are given as mean ± standard deviation (number of patients assessed).

Discussion

+ Barber et al. compared continuous-flow cryotherapy with no cryotherapy controls after ACL reconstruction

> Improved VAS, Oral narcotics use, ROM

Barber FA. Arthroscopy. 1998;14(2):130-135.

+ Recent systematic review significant reduction in pain scores at 48 hours after ACL reconstruction compared to no cryotherapy

Martimbianco ALC. Phys Ther Sport 2014;15:261-268.

+ In laboratory studies involving artificial knee joint effusion models, concluded that cryotherapy is effective in reducing swelling or joint effusion

Hopkins J. J Athl Train 2002;37(1):25-31. Rice D. Arthritis Rheum 2009;61(1):78-83.

+ These results of previous clinical studies were in line with our study's data

+ No previous studies have quantified the effectiveness of cryotherapy on reducing the effusion volume

Conclusions

 Application of cryopneumatic compression device was associated with significant reduction in (1)VAS pain scores and (2)Joint effusion during the early postoperative period following ACL reconstruction.

한양대학교 HANYANG UNIVERSITY